
Linux Security and Isolation APIs

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2025

January 2025

mtk@man7.org

Outline Rev: # 8d7fc39ab521

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Goals

We’ll focus on:

General principles of operation; goals of cgroups

The cgroup2 filesystem

Interacting with cgroup2 filesystem using shell commands

Origin of cgroups v2 (i.e., problems with cgroups v1)

Differences between cgroups v2 and v1

We’ll look briefly at some of the controllers

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-4 §18.1

Resources

Kernel documentation files

V2: Documentation/admin-guide/cgroup-v2.rst

V1: Documentation/admin-guide/cgroup-v1/*.rst

Before Linux 5.3: Documentation/cgroup-v1/*.txt

cgroups(7) manual page

Chris Down, 7 years of cgroup v2,
https://www.youtube.com/watch?v=LX6fMlIYZcg

Neil Brown’s (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/

Thought-provoking ideas on the meaning of grouping & hierarchy

https://lwn.net/Articles/484254/ – Tejun Heo’s initial thoughts
about redesigning cgroups (Feb 2012)

See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

Other articles at https://lwn.net/Kernel/Index/#Control_groups

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-5 §18.1

Some history

2006/2007, “Process Containers” @ Google ⇒ Cgroups v1

Jan 2008: initial mainline kernel release (Linux 2.6.24)

Three resource controllers (all CPU-related) in initial release

Subsequently, other controllers are added

memory, devices, freezer, net_cls, blkio...

But a few years of uncoordinated design leads to a mess

Decentralized design fails us... again

2012: work has already begun on cgroups v2...

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-6 §18.1

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

Some history

Sep 2015: systemd adds cgroup v2 support

(Based on kernel 4.2)

Mar 2016: cgroups v2 officially released (Linux 4.5)

But, lacks feature parity with cgroups v1

Jan 2018: cpu and devices controllers are released for
cgroups v2

(Absence had been major roadblock to adoption of v2)

Oct 2019: Fedora 31 is first distro to move to v2-by-default

2020: Docker 20.10 gets cgroups v2 support

2021: other distros move to v2-by-default

Debian 11.0 (Aug 2021); Ubuntu 21.10 (Oct 2021); Arch

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-7 §18.1

We have passed the tipping point

We have passed the v1-to-v2 tipping point:

systemd, Docker and other tools fully support cgroups v2,
and the distros have migrated to v2

Cgroups v2 offers a number of advantages over v1

⇒ we’ll focus on cgroups v2, and later look at how v1 is
different

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-8 §18.1

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

What are control groups?

Two principal components:

A mechanism for hierarchically grouping processes

A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

Interface is via a pseudo-filesystem

Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands

Programmatically

Via management daemon (e.g., systemd)

Via your container framework’s tools (e.g., LXC, Docker)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-10 §18.2

What do cgroups allow us to do?

Limit resource usage of group

E.g., limit % of CPU available to group; limit amount of
memory that group can use

Resource accounting

Measure resources used by processes in group

Limit device access

Pin processes to CPU cores

Shape network traffic

Freeze a group

Freeze, restore, and checkpoint a group

And more...

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-11 §18.2

Terminology

Control group: a group of processes that are bound
together for purpose of resource management

(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpu controller
limits CPU usage

Also known as subsystem

(But that term is rather ambiguous because so generic)

Cgroups are arranged in a hierarchy

Each cgroup can have zero or more child cgroups

Child cgroups inherit control settings from parent

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-12 §18.2

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell
commands) to create cgroups

Each subdirectory contains automagically created files

Some files are used to manage the cgroup itself

Other files are controller-specific

Files in cgroup are used to:

Define/display membership of cgroup

Control behavior of processes in cgroup

Expose information about processes in cgroup (e.g.,
resource usage stats)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-13 §18.2

The cgroup2 filesystem

On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup

(or /sys/fs/cgroup/unified, if systemd is operating in
cgroups “hybrid” mode)

mount -t cgroup2 none /sys/fs/cgroup

The (pseudo)filesystem type is “cgroup2”

In cgroups v1, filesystem type is “cgroup”

The cgroups v2 mount is sometimes known as the “unified
hierarchy”

Because all controllers are associated with a single hierarchy

By contrast, in v1 there were multiple hierarchies

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-14 §18.2

Booting to cgroups v2

You may be on a distro that uses systemd’s “hybrid” mode
by default

Hybrid mode combines use of cgroups v1 and v2

Problem: can’t simultaneously use a controller in both v1
and v2

Simplest solution is usually to reboot, so that systemd
abandons its hybrid mode, and uses just v2

If this shows a value > 1, then you need to reboot:

$ grep -c cgroup /proc/mounts # Count cgroup mounts

Either: use kernel boot parameter, cgroup_no_v1:

cgroup_no_v1=all ⇒ disable all v1 controllers

Or: use systemd.unified_cgroup_hierarchy boot
parameter

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-15 §18.2

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Example: the pids controller

pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)

Create new cgroup, and place shell’s PID in that cgroup:

mkdir /sys/fs/cgroup/mygrp
echo $$
17273
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

cgroup.procs defines/displays PIDs in cgroup

(Note ’#’ prompt ⇒ all commands done as superuser)

Moving a PID into a group automatically removes it from
group of which it was formerly a member

I.e., a process is always a member of exactly one group in
the hierarchy

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-18 §18.3

Example: the pids controller

Can read cgroup.procs to see PIDs in group:

cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

Where did PID 20591 come from?

PID 20591 is cat command, created as a child of shell

Child process inherits cgroup membership from parent

pids.current shows how many processes are in group:

cat /sys/fs/cgroup/mygrp/pids.current
2

Two processes: shell + cat

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-19 §18.3

Example: the pids controller

We can limit number of PIDs in group using pids.max file:

echo 5 > /sys/fs/cgroup/mygrp/pids.max
for a in $(seq 1 5); do sleep 60 & done
[1] 21283
[2] 21284
[3] 21285
[4] 21286
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

(The shell retries a few times and then gives up)

pids.max defines/exposes limit on number of PIDs in
cgroup

From a different shell, examine pids.current:

$ cat /sys/fs/cgroup/mygrp/pids.current
5

Not possible from first shell (can’t create more processes)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-20 §18.3

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Creating cgroups

Initially, all processes on system are members of root
cgroup

New cgroups are created by creating subdirectories under
cgroup mount point:

mkdir /sys/fs/cgroup/mygrp

Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-22 §18.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory

Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

Presence of zombie process does not prevent removal of
cgroup directory

(Notionally, zombies are moved to root cgroup)

Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-23 §18.4

Placing a process in a cgroup

To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory

echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

In multithreaded process, moves all threads to cgroup

" Can write only one PID at a time

Otherwise, write() fails with EINVAL

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-24 §18.4

Viewing cgroup membership

To see PIDs in cgroup, read cgroup.procs file

PIDs are newline-separated

Zombie processes do not appear in list

" List is not guaranteed to be sorted or free of
duplicates

PID might be moved out and back into cgroup or recycled
while reading list

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-25 §18.4

Cgroup membership details

A process can be member of just one cgroup

That association defines attributes / parameters that apply
to the process

Adding a process to a different cgroup automatically
removes it from previous cgroup

On fork(), child inherits cgroup membership(s) of parent

Afterward, cgroup membership(s) of parent and child can
be independently changed

Since Linux 5.7 (2020), a child process can be created in a
specific v2 cgroup using clone3() CLONE_INTO_CGROUP

See procexec/t_CLONE_INTO_CGROUP.c

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-26 §18.4

/proc/PID/cgroup file

/proc/PID/cgroup shows cgroup memberships of PID

8:cpu,cpuacct:/cpugrp3
7:freezer:/
...
0::/grp1

1 Hierarchy ID (0 for v2 hierarchy)

Can be matched to hierarchy ID in another file,
/proc/cgroups (but that file is not so interesting)

2 Comma-separated list of controllers bound to the hierarchy

Field is empty for v2 hierarchy

3 Pathname of cgroup to which this process belongs

Pathname is relative to cgroup root directory

On a system booted in v2-only mode, there is just one line
in this file (0::...)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-27 §18.4

Killing all processes in a cgroup

Writing “1” to cgroup.kill kills all processes in a cgroup
Action is recursive

I.e., processes in descendant cgroups are also killed

Processes are killed using SIGKILL

File is write-only, and available only in non-root cgroups :-)

Available since Linux 5.14 (2021)

Example use cases:

Service managers (e.g., systemd) can kill all processes in a
service

User-space “out-of-memory” (OOM) handlers can
quickly/easily kill an entire cgroup

Handle some kill-container use cases that can’t be handled
by killing container PID 1

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-28 §18.4

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-30 §18.5

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-31 §18.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-32 §18.5

Booting to cgroups v2

In preparation for the following exercises, if necessary reboot your
system to use cgroups v2 only, as follows...

First, check whether your system is already booted to use cgroups v2
only:

$ grep cgroup2 /proc/mounts # Is there a v2 mount?
cgroup2 /sys/fs/cgroup cgroup2 ...
$ grep cgroup /proc/mounts | grep -v name= | grep -vc cgroup2
0 # 0 == no v1 controllers are mounted

If there is a v2 mount, and no v1 controllers are mounted, then
you do not need to do anything further; otherwise:

From the GRUB boot menu, you can boot to cgroups v2–only mode by
editing the boot command (select a GRUB menu entry and type “e”).
In the line that begins with “linux”, add the following parameter:

systemd.unified_cgroup_hierarchy

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-33 §18.5

Exercises

1 In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).

Execute the following command, and note the PID assigned to
the resulting process:

sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.

Now write the PID of the process into the file m2/cgroup.procs.

Is the PID still visible in the file m1/cgroup.procs? Explain.

Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?

If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-34 §18.5

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Enabling and disabling controllers

Each cgroup v2 directory contains two files:

cgroup.controllers: lists controllers that are available
in this cgroup

cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

Always a subset of cgroup.controllers

Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-36 §18.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

cgroup.controllers lists the controllers that are available
in a cgroup

Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

devices, freezer, network, perf_event

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-37 §18.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

A controller may not be available because:
Controller is not enabled in parent cgroup

(Does not apply for “automatic” controllers)

The same controller is already in use in cgroups v1

Cgroups v1 and v2 can coexist, but a controller can be used
in only one version

Kernel was built without support for that controller

Controller was disabled at boot time

Using the boot option cgroup_disable=name[,...]

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-38 §18.6

Enabling controllers: cgroup.subtree_control

cgroup.subtree_control is used to show or modify the
set of controllers that are enabled in a cgroup:

cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

I.e., can’t enable controller that is not available in a cgroup

Controllers are enabled/disabled by writing to this file:

echo '+cpuset' > cgroup.subtree_control # Enable a controller
cat cgroup.subtree_control
cpuset cpu io memory pids
echo '-cpuset' > cgroup.subtree_control # Disable a controller
cat cgroup.subtree_control
cpu io memory pids

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-39 §18.6

Enabling controllers: cgroup.subtree_control

Enabling a controller in cgroup.subtree_control:

Allows resource to be controlled in child cgroups

Causes controller-specific attribute files to appear in
each child directory

Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

This is a significant difference from cgroups v1

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-40 §18.6

cgroup.subtree_control example

Review situation in root cgroup:

cd /sys/fs/cgroup/
cat cgroup.controllers
cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control
cpu io memory pids

Create a small subhierarchy:

mkdir -p grp_x/grp_y

Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:

cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

Consequently, no controllers are available in grp_y:

cat grp_x/grp_y/cgroup.controllers # Empty...

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-41 §18.6

cgroup.subtree_control example

List cpu.* files in grp_y:

cd /sys/fs/cgroup/grp_x
ls grp_y/cpu.*
grp_y/cpu.pressure grp_y/cpu.stat

(These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:

echo '+cpu' > cgroup.subtree_control
ls grp_y/cpu.*
grp_y/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp_y/cpu.weight

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-42 §18.6

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...

Set hard CPU limit of 50% in child cgroup (grp_y):

echo '50000 100000' > grp_y/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:

echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:

$./cpu_burner
[6445] %CPU = 99.86
[6445] %CPU = 99.83
...
[6445] %CPU = 83.52
[6445] %CPU = 50.00
[6445] %CPU = 50.00
...

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-43 §18.6

Managing controllers to differing levels of granularity

A controller is available in child cgroup only if it is
enabled in parent cgroup:

cat cgroup.controllers
cpuset cpu io memory hugetlb pids
cat cgroup.subtree_control
cpu memory pids
cat grp1/cgroup.controllers
cpu memory pids

cpuset, io, and hugetlb are not available in grp1

In grp1, none of the available controllers is initially enabled,
so no controllers are available at next level:

cat grp1/cgroup.controllers
cpu memory pids
cat grp1/cgroup.subtree_control # Empty
mkdir grp1/{grp10,grp11} # Make grandchild cgroups
cat grp1/grp2/cgroup.controllers # Empty

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-44 §18.6

Managing controllers to differing levels of granularity

If we enable cpu in grp1, it becomes available at next level

echo '+cpu' > grp1/cgroup.subtree_control
cat grp1/grp10/cgroup.controllers
cpu

And cpu interface files appear in grp1/{grp10,grp11}

Here, cpu is being managed at finer granularity than memory

We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grp11

But we can’t make distinct memory allocation decisions

grp10 and grp11 will share memory allocation from grp1

We did this by design (so we can manage different
resources to different levels of granularity):

We want distinct CPU allocations in grp10 and grp11

We want grp10 and grp11 to share a memory allocation

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-45 §18.6

Top-down constraints

Child cgroups are always subject to any resource constraints
established in ancestor cgroups

⇒ Descendant cgroups can’t relax constraints imposed by
ancestor cgroups

If a controller is disabled in a cgroup (i.e., not present in
cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-46 §18.6

No internal tasks rule

Cgroups v2 enforces a rule often expressed as: “a cgroup
can’t have both child cgroups and member processes”

I.e., only leaf nodes can have member processes

The “no internal tasks” rule

But the rule more precisely is:
A cgroup can’t both:

distribute a resource to child cgroups (i.e., enable
controllers in cgroup.subtree_control), and

have member processes

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-47 §18.6

No internal tasks rule

Revised statement: “A cgroup can’t both distribute
resources and have member processes”

Conversely (1):

A cgroup can have member processes and child cgroups...

if it does not enable controllers for child cgroups

Conversely (2):
If cgroup has child cgroups and processes, the processes
must be moved elsewhere before enabling controllers

E.g., processes could be moved to child cgroups

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-48 §18.6

No internal tasks rule

Further details on the no internal tasks rule:

The root cgroup is (necessarily) an exception to this rule

The rule is irrelevant for “automatic” controllers

Because those controllers (e.g., freezer, devices) are
always available (i.e., don’t need to be enabled)

" The rule changed for certain controllers in Linux 4.14

(The so-called “threaded controllers”)

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-49 §18.6

Outline

18 Cgroups: Introduction 18-1
18.1 Preamble 18-3
18.2 What are control groups? 18-9
18.3 An example: the pids controller 18-16
18.4 Creating, destroying, and populating a cgroup 18-21
18.5 Exercises 18-29
18.6 Enabling and disabling controllers 18-35
18.7 Exercises 18-50

Exercises

1 This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

Check that the pids controller is visible in the cgroup root
cgroup.controllers file. If it is not, reboot the kernel as
described on slide 18-15.

To simplify the following steps, change your current directory to
the cgroup root directory (i.e., the location where the cgroup2

filesystem is mounted; on recent systemd-based systems, this will
be /sys/fs/cgroup, or possibly /sys/fs/cgroup/unified).

Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:

mkdir xxx
mkdir xxx/yyy
echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

[Exercise continues on next page...]

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-52 §18.7

Exercises

Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:

echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

In another terminal, use the supplied cgroups/fork_bomb.c

program.

fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:

$./fork_bomb 30

[Exercise continues on next page...]

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-53 §18.7

Exercises

The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild pids cgroup:

echo parent-PID > xxx/yyy/cgroup.procs

In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

2 This exercise demonstrates what happens if we try to enable a
controller in a cgroup that has member processes.

Under the cgroup root directory, create a new cgroup named
child, and enable the memory controller in the root cgroup:

cd /sys/fs/cgroup # or: cd /sys/fs/cgroup/unified
mkdir child
echo '+memory' > cgroup.subtree_control

[Exercise continues on the next slide]

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-54 §18.7

Exercises

Start a process running sleep, and place the process into the
child cgroup:

sleep 1000 &
echo $! > child/cgroup.procs

What happens if we now try to enable the memory controller in
the child cgroup via the following command?

echo '+memory' > child/cgroup.subtree_control

Does the result differ if we reverse the order of the preceding steps
(i.e., enable the controller, then place a process in the cgroup)?

Linux Security and Isolation APIs ©2025 M. Kerrisk Cgroups: Introduction 18-55 §18.7

Notes

